

Enhancing product security by using direct marking and QR codes

larigai 2015, 7.9.2015

Liisa Hakola, Thea Sipiläinen-Malm, Hanna-Leena Alakomi

DIGITAL DIRECT MARKING

- Marking directly on product surface
- Inkjet printing and laser marking for decoration and product safety
- Benefits: automation, mass production, customised markings, integration into production lines
- Inkjet printing accepted by EU and FDA for food decoration, printing systems and edible inks available

MOTIVATION

- Typically safety elements on product packages
- One aspect of counterfeiting is replacement of products, but the genuine package is retained
 - Safety elements also on the product itself needed
 - At the same time brand promotion and entertainment features
- More specific traceability in case of product concerns

EDEN PROJECT

- 3 themed end-user demonstrations (Food Industry, Multi Chemical, Radiological) covering multiple hazards (CBRNe)
- The Food Industry demonstrator is about contamination on the food chain and focuses on guarantee and assessment of food safety during extreme situations
- The food chain is vulnerable to natural, accidental and deliberate contamination.
 Therefore security and safety of food has a major role in the global public health.

OBJECTIVES

- Evaluation of the potential of inkjet printing based direct marking to provide security elements – specifically QR codes – on food products
- Do QR codes remain readable during storage despite ink spreading in cold and humid conditions (+4 °C, 1 week)?
- QR codes inkjet printed with edible commercial inks on ham slices and read with a mobile phone

MATERIALS AND METHODS

- Inkjet printing: drop-on-demand industrial printheads (Fujifilm Dimatix, 80 pl, 300 dpi, 150 mm/s)
- Four inks that differ in main solvent and colorant
- Three substrates: 1) sliced ham, 2) copy paper (Staples Europe B.V., 80 g/m²),
 3) photographic paper (Intelicoat Technologies, 250 g/m²)
- Printing layout: QR Codes with different cell size between 0.25-1.50 mm, code content "www.vtt.fi" with 21 x 21 cells
- After printing vacuum packaging & putting into pouches, storage in +4 °C
- Code reading after printing, after packaging, 1 day after packaging, 7 days after packaging with mobile phone (Lumia 800 with 8 Mpix camera)

Ink	Trade name	Manufacturer	Main solvents	Colorant
Edible ink 1	Tapestry	Fujifilm Dimatix	Glycols, glycerol	Dye-based cyan
Edible ink 2	6120	Linx Printing Technologies	Ethyl acetate	Cyan
Edible ink 3	76000-00102	Leibinger Group	Ethanol	Cyan
Solvent based ink	Jetrion	Jetrion	Glycols	Pigment based black

SMALLEST READABLE CELL SIZE

- The smallest readable cell size after printing 0.20-0.50 mm
 → final cell sizes used 0.25-1.50 mm due to expected spreading
- Contrast with Edible ink 3 poor \rightarrow not used for further tests

Edible ink 1, Edible ink 2, Edible ink 3, Solvent based ink (cell size 1.00 mm)

COMPARISON BETWEEN SUBSTRATES

 Print quality on ham slices poorer than on paper as a result of ink spreading

Cell size 1.00 mm

INK SPREADING DURING STORAGE

- Ink spreading during storage
- Edible ink 2 spreads less
- More spreading in pouches than in vacuum packages

Cell size 1.50 mm

CODE READABILITY AFTER STORAGE

Ink	Edible ink 1					Edible ink 2						
Cell size (mm)	1.50	1.25	1.00	0.75	0.50	0.25	1.50	1.25	1.00	0.75	0.50	0.25
Ham slices												
After printing	13/13	13/13	13/13	12/13	12/13	0/13	8/8	8/8	8/8	5/8	0/8	0/8
After packaging	4/5	3/5	2/5	1/5	0/5	0/5	2/4	2/4	2/4	0/4	0/4	0/4
After pouching	1/5	4/5	2/5	0/5	0/5	0/5	4/4	4/4	4/4	4/4	0/4	0/4
Packages after 1 day in +4 °C	1/5	0/5	0/5	0/5	0/5	0/5	2/4	2/4	0/4	0/4	0/4	0/4
Packages after 7 days in +4 °C	1/5	0/5	0/5	0/5	0/5	0/5	0/4	0/4	0/4	0/4	0/4	0/4
Pouches after 1 day in +4 °C	1/5	0/5	0/5	0/5	0/5	0/5	2/4	1/4	0/4	0/4	0/4	0/4
Pouches after 7 days in $+4$ °C	0/5	0/5	0/5	0/5	0/5	0/5	0/4	0/4	0/4	0/4	0/4	0/4
Copy paper												
After printing	3/3	3/3	3/3	3/3	2/3	0/3	3/3	3/3	3/3	3/3	3/3	0/3
Photographic paper												
After printing	3/3	3/3	3/3	3/3	1/3	0/3	3/3	3/3	3/3	3/3	3/3	0/3

CONCLUSIONS

- Commercial edible inks suitable for printing on ham slices → suitable to be used for security solutions
- However, the inks spread during cold storage, even when vacuum packaged → careful optimisation of the code cell size required
- Very small cell sizes readable with optical microscope integrated into mobile phone

ACKNOWLEDGEMENTS

- The research leading to these results has received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement no 313077 within the EDEN Project (End-user driven DEmo for cbrNe)
- Laboratory personnel: Pirjo Hakkarainen, Seppo Kuosmanen

TECHNOLOGY FOR BUSINESS

Liisa Hakola

עתיל

Senior Scientist, M.Sc. (Tech.) VTT TECHNICAL RESEARCH CENTRE OF FINLAND Printed and hybrid functionalities, Printed sensors and electronic devices Tietotie 3, Espoo, P.O.Box 1000, FI-02044 VTT Finland Phone +358 40 841 5978 www.vtt.fi, liisa.hakola@vtt.fi